应用稳态误差分析辨识LuGre模型参数  被引量:16

Parameter identification of LuGre model based on analysis of steady state error

在线阅读下载全文

作  者:谭文斌[1] 李醒飞[1] 向红标[2] 朱嘉[1] 张晨阳[3] 

机构地区:[1]天津大学精密测试技术及仪器国家重点实验室,天津300072 [2]天津理工大学机械工程学院,天津300384 [3]天津商业大学机械工程学院,天津300131

出  处:《光学精密工程》2011年第3期664-671,共8页Optics and Precision Engineering

基  金:国家自然科学基金资助项目(No.50975206)

摘  要:为精确得到模型的动静态参数,提出了以稳态误差分析为基础的模型参数辨识方法。首先,确立了伺服系统的稳态误差与其输入信号、干扰信号的关系,并以此为基础消除了转矩纹波对摩擦模型参数辨识的干扰;然后,利用稳态误差推导摩擦力矩,采用遗传算法辨识动静态参数;最后,利用辨识后的模型进行摩擦补偿,分析其补偿效果。实验结果表明,补偿后的稳态误差明显减小,匀速运动时由36μm减小到±3μm,匀加速运动时由34μm减小到±3μm,正弦运动时由±35μm减小到±7μm。本文提出的辨识方法能够精确地得到LuGre摩擦模型的动静态参数。基于辨识后的模型可有效地提高伺服系统的跟踪精度。To get accurate parameters in both static and dynamic models, an identification method of model parameters based on the analysis of steady state error was presented. Firstly, the relationship between steady state errors and input and interference signals in a servo system was determined, and the influence of torque ripples on the parameter identification was eliminated based on the study a- bove. Then, the friction torque was deduced by using the steady state error, and the static and dynamic parameters were identified through the genetic algorithm. Finally, the friction torque was compensated according to the identified model, and the compensated effect was analyzed. The experimental results show that the steady state error of uniform motion has decreaseed from 36 um to ±3 um, that of uniformly accelerated motion decreased from 34 um to ±3 um, and that of sinusoidal motion decreased from 35 um to ± 7um. It concludes that the dynamic and static parameters of LuGre can be precisely obtained by this identification method, and the tracking accuracy of the servo system can also be improved through friction compensation on the basis of the proposed model.

关 键 词:LuGre摩擦模型 参数辨识 转矩纹波 稳态误差 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置] TP391[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象