r-一致超图Ramsey函数的渐近下界(英文)  

Asymptotic Lower Bounds of Ramsey Numbers for r-uniform Hypergraphs

在线阅读下载全文

作  者:宋洪雪[1] 

机构地区:[1]南京邮电大学理学院,南京江苏210003

出  处:《数学进展》2011年第2期179-186,共8页Advances in Mathematics(China)

基  金:supported be the Natural Science Foundation for Colleges and Universities in Jiangsu Province of China(No.09KJD110004)

摘  要:本文利用Lovasz局部引理的Spencer形式和对称形式给出r-一致超图Ramsey函数的渐近下界.证明了:对于任意取定的正整数f<k和m≥r+1≥3,存在常数c=c(l,m)>0,使得当n→∞时,有R^((r))(m^l,n^(k-l))≥(c-o(1))(n^(r-1)/logn)~■.特别地,R^((r))_k(n)≥(1-o(1))n/e k~■(n→∞).对于任意取定的正整数s≥r+1和常数δ>0,α≥0,如果F表示阶为s的r-一致超图,■表示阶为t的r-一致超图,且■的边数满足m(■)≥(δ-o(1))t^r/(logt)α(t→∞),则存在c=c(s,δ,α)>0,使得R^((r))(F,■)≥(c-o(1))(t^(r-1)/(logt)~l+(r-l)α)^(m(F)-l/s-r).In this paper,we apply the Spencer's form and symmetric form of Lovaszlocal lemma to derive the asymptotic lower bounds for r-uniform hypergraphs.For any fixedpositive integer lk and m≥r + 1≥3,there exists a constant c = c(r,l,m)0 such thatR^((r))(m^1,n^(k-1))≥(c-o(1))(n^(r-1)/log n)^(■-1/m-r)(n→∞).In particular,R_k^((r))(n)≥(1 - o(1)) n/ek^(■-1/n-r)(n→∞).And for any fixed integer s≥r + 1,constantsδ0 andα≥0,if F is a runiformhypergraph on s vertices and G is a r-uniform hypergraph on t vertices with m(G)≥(δ-o(1))t^r/(log t)~αas t→∞,then there exists a constant c = c(s,δ,α)0 such that R^((r))(F,G)≥(c-o(1))(t^(r-1)/(log t^(1+(r-1)α))^(m(F)-1/s-r).

关 键 词:RAMSEY数 下界 超图 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象