检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学数学系,杭州310027 [2]上饶师范学院数计学院,上饶334001 [3]丽水职业技术学院基础部,丽水323000
出 处:《数学学报(中文版)》2011年第3期415-426,共12页Acta Mathematica Sinica:Chinese Series
基 金:国家自然科学基金资助项目(10871173)
摘 要:讨论了如下形式多线性位势算子交换子I_(?)((?))(x)=(?)Φ(x-y_1,…,x-y_m)f_1(y_1)…(?)(b_i(x)-b_i(y_i))d(?),其中Φ((?))是一个满足一类特殊条件的函数.证明了此类位势算子交换子I_(?)((?))是从加权乘积空间L^(p_1)(v_1^(p_1))×…×L^(p_m)(v_m^(p_m))到L_q(u^q)有界的,其中(?)∈L^(p_1)(v_1^(p_1))×…×L^(p_m)(v_m^(p_m)),并且权函数v_1,…,v_m,u满足一类"power and logarithmic bumps"条件.We consider the commutators of multilinear potential operators defined byIФ,b^→(f^→)(x)=∫(R^n)^mΦ(x-y1,…,x-ym)f1(y1)…fm(ym)Пi=1^m(bi(x)-bi(yi))dy^→ where Φ(x^→) satisfies some certain conditions.We prove that the operator IФ,b^→ isbounded from L^p1(v1^p1)×…×L^pm(vm^pm)to L^q(u^q) for allf^→∈L^p1(v1^p1)×…×L^pm(vm^pm) provided that the weights v1,…,vm,u satisfiy some power and logarithmic bumpsconditions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.220.244.188