检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学惯导测试设备研究中心,黑龙江哈尔滨150001
出 处:《哈尔滨工业大学学报》1999年第4期1-4,共4页Journal of Harbin Institute of Technology
基 金:国家重大技术创新计划项目!(1998-345);国家火炬计划项目!(99D231D741091)
摘 要:模糊逻辑系统与人工神经网络各具优势,前者善于利用专家语言信息,后者有强大的学习能力,两者的结合可以取长补短.基于模糊逻辑系统与神经网络技术提出一种自适应模糊控制系统,其特点是模糊控制器具有多层前向网络结构.基于一种近最优的性能指标导出其参数自适应的误差反向传播算法.为了克服传统算法收敛慢的缺点,提出用模糊逻辑来调整学习过程的方法.通过倒立摆平衡控制仿真研究验证了所提出的自适应模糊控制系统及其快速学习算法是有效的.Fuzzy logic system is good at utilizing experts' information, while neural network possesses powerful leaming ability, and they can leam from others' strong points to offset its weakness by combining two methodologies . An adaptive fuzzy control system based on fuzzy logic system and neural network is proposed in this paper. This system features a fuzzy controller with a multi-layer network structure, so. naturally a error back-propagation algorithm can be derived from a near-optimal performance index to adaptively tune the rules' parameters. In order to improve the convergence rate, a fuzzy logic method is used to adjust the learning rate. At last, simulations for controlling invert-pendulum prove the adaptive fuzzy control system and its fast learning algorithm proposed in this paper are effective.
分 类 号:TP273.2[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15