一种改进的PRSVM语种识别方法  被引量:2

Improved PRSVM Method for Language Recognition

在线阅读下载全文

作  者:金恬[1] 宋彦[1] 戴礼荣[1] 

机构地区:[1]中国科学技术大学电子工程与信息科学系,安徽合肥230027

出  处:《小型微型计算机系统》2011年第5期1017-1020,共4页Journal of Chinese Computer Systems

基  金:安徽省自然科学基金项目(090412056)资助

摘  要:传统的PRSVM方法存在以下问题:音素识别器的符号化结果与原语音存在不一致;向量空间维数高,稀疏.针对以上问题,先改用更适合噪声环境下连续电话语音的音素识别器,并采用词图结构改善解码效果,再分别用全局和局部两种隐含语义分析策略改进区分性训练问题.实验表明,本方法不但有效,而且大大减少了运算量.在NIST2007语种识别评测30秒、10秒和3秒任务中,本方法比基线系统性能有显著提高,等错误率分别相对降低了22.3%、14.7%和12.2%.Although Language Recognition based on Phone Recognition followed by Support Vector Machine(PRSVM) can achieve good performance,there are several problems: the inconsistency of phone recognition is very serious due to the noise;the vector space is high-dimensional and sparse.To tackle these problems,a language recognition method with lattice and latent semantic analysis is proposed.In this method,we apply an NN/HMM phone recognizer and improve the performance of Viterbi decoding by lattice,then a dimensionality reduction method mapping term space to topic space is applied based on singular value decomposition of term-document matrix in a global strategy and a local strategy respectively.Finally,we use a discriminative training method,support vector machine to do the classification.The experiments on NIST Language Recognition 2007 30、10 and 3 sec evaluation task show advantage of our proposed method,that the Equal Error Rates are reduced relatively about 22.3%、14.7% and 12.2%.

关 键 词:语种识别 词图 支持向量机 隐含语义分析 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象