检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学电子工程与信息科学系,安徽合肥230027
出 处:《小型微型计算机系统》2011年第5期1017-1020,共4页Journal of Chinese Computer Systems
基 金:安徽省自然科学基金项目(090412056)资助
摘 要:传统的PRSVM方法存在以下问题:音素识别器的符号化结果与原语音存在不一致;向量空间维数高,稀疏.针对以上问题,先改用更适合噪声环境下连续电话语音的音素识别器,并采用词图结构改善解码效果,再分别用全局和局部两种隐含语义分析策略改进区分性训练问题.实验表明,本方法不但有效,而且大大减少了运算量.在NIST2007语种识别评测30秒、10秒和3秒任务中,本方法比基线系统性能有显著提高,等错误率分别相对降低了22.3%、14.7%和12.2%.Although Language Recognition based on Phone Recognition followed by Support Vector Machine(PRSVM) can achieve good performance,there are several problems: the inconsistency of phone recognition is very serious due to the noise;the vector space is high-dimensional and sparse.To tackle these problems,a language recognition method with lattice and latent semantic analysis is proposed.In this method,we apply an NN/HMM phone recognizer and improve the performance of Viterbi decoding by lattice,then a dimensionality reduction method mapping term space to topic space is applied based on singular value decomposition of term-document matrix in a global strategy and a local strategy respectively.Finally,we use a discriminative training method,support vector machine to do the classification.The experiments on NIST Language Recognition 2007 30、10 and 3 sec evaluation task show advantage of our proposed method,that the Equal Error Rates are reduced relatively about 22.3%、14.7% and 12.2%.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.131.37.22