检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王立琦[1,2] 孔庆明[2] 李贵滨[2] 张礼勇[1] 于殿宇[3] 江连洲[3]
机构地区:[1]哈尔滨理工大学测控技术与通信工程学院,黑龙江哈尔滨150086 [2]哈尔滨商业大学计算机与信息工程学院,黑龙江哈尔滨150028 [3]东北农业大学食品学院,黑龙江哈尔滨150030
出 处:《食品科学》2011年第9期97-100,共4页Food Science
基 金:国家"863"计划项目(2010AA101503);黑龙江省教育厅科学技术研究项目(11551109)
摘 要:在大豆油脂过氧化值近红外光谱分析中,利用间隔偏最小二乘法(interval partial least square,iPLS)实现油脂光谱特征波段选择。分别将全谱波段以10个数据点间隔和20个数据点间隔分成若干个小波段,然后对全谱和每个小波段分别用PLS回归建模,用预测残差平方和(predicted residual sum of squares,PRESS)对模型进行评价。结果表明:经过特征波段选择后,50个波长点模型的决定系数、预测误差均方根、相对误差均值分别为0.9791、0.0513和2.12%,有效地减少建模的变量数,预测精度得到提高。During analyzing peroxide value of soybean oil by near-infrared spectroscopy,iPLS(interval partial least squares) was applied to select characteristic spectral bands of soybean oil.The whole spectrum was divided into several smaller bands using data intervals of 10 and 20 points,respectively.Then,PLS regression models were established by using whole spectrum and smaller bands.These models were evaluated by PRESS(predicted residual sum of squares).The results indicated that after selecting characteristic bands,the R2,RMSEP and RSD were 0.9791,0.0513 and 2.12%,respectively.The variables in these models were decreased effectively and the prediction accuracy was improved.
关 键 词:油脂过氧化值 近红外光谱 特征波段选择 间隔偏最小二乘法(iPLS)
分 类 号:TS207.3[轻工技术与工程—食品科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63