检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津科技大学食品工程与生物技术学院,天津300457 [2]教育部工业微生物重点实验室,天津科技大学生物工程学院,天津300457
出 处:《食品研究与开发》2011年第5期9-12,共4页Food Research and Development
基 金:十一五国家科技支撑计划项目(2009BADB9B05)
摘 要:测定3个产区,32种梅鹿辄葡萄原酒中的主要氨基酸含量,建立基于氨基酸含量的梅鹿辄葡萄原酒产地判别模型。首先采用方差分析剔除产地间无显著差别的变量,并用主成分分析深入分析数据结构,进而对原始变量进行有效压缩,随后采用逐步线性判别分析选取了6种产地间判别能力强的氨基酸,最后建立了基于这6种氨基酸的梅鹿辄葡萄原酒产地间的典则判别模型。通过交叉检验,该模型对不同产地葡萄原酒的判别能力达到了96.86%。将该模型应用于实际商品酒的判别,发现识别能力有所降低,只有73.6%,这说明商品酒的勾兑对模型的拟合影响很大,虽然如此,本建模方法仍可作为对未勾兑的葡萄原酒产地判别的有效方法,为中国葡萄酒原产地的检测提供方法借鉴。The amino acid content in 32 Merlot grape base liquors, which from three grape cultivars were determined. One way analysis of variance (ANOVA) was used to determine significant concentration differences between the different cultivars. Further grouping of the data was investigated by principal component analysis (PCA) and stepwise linear discriminant analysis(SLDA). Finally, canonical discriminant analysis (CDA) was used to derive classification functions for the effective recognition of wine origins. Only 6 kinds of amino acid enabled to differentiate and classify the experimental wines. CDA allowed 96.86 % recognition ability for three grape cuhivars. When we demonstrated the models using commercial wines, the models showed only 73.6 % recognition ability. It means that blending procedures strongly influence the classification. Nevertheless, this method could be applied as a method for grape base liquors which do not need blending procedures.
关 键 词:葡萄酒 氨基酸 主成分分析 逐步线性判别分析 判别
分 类 号:TS262.6[轻工技术与工程—发酵工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.54