检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]合肥工业大学计算机与信息学院,安徽合肥230009
出 处:《中国科学技术大学学报》2011年第4期347-352,共6页JUSTC
基 金:国家重点基础研究发展(973)计划(2009CB326203);国家自然科学基金(60975034);安徽省自然科学基金(090412044)资助
摘 要:隐含概念漂移的数据流分类问题是数据挖掘领域研究的热点之一,而实际数据中的噪音会直接影响概念漂移检测及分类质量,因此具有良好抗噪性能的数据流分类方法具有重要的研究和应用价值.随机决策树的集成模型是一种有效的数据流分类模型,为此本文基于随机决策树,引入Hoeffding Bounds不等式来检测和区分概念漂移和噪音,根据检测结果动态调整滑动窗口的大小和漂移检测周期,并提出一种增量式的集成分类方法ICDC,实验结果表明,本文算法在含噪音数据流上处理概念漂移是有效的.Classification of data streams with concept drift has become one of hot research spots.However,noise in real data directly affects the result of detection of concept drift and the quality of classification.Therefore,an anti-noise approach is of important value for research and application.Based on the ensemble random decision tree,an effective classification model for stream classification,an incremental approach ICDC was proposed by introducing the Hoeffding Bounds inequality to distinguish concept drift and noise in classification,which adjusts the period of detection and window size for training data in accordance with the detection results.Extensive studies on synthetic and real streaming databases demonstrate that ICDC performs quite effectively compared with several known single or ensemble online algorithms.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117