一种无界区域上二维双调和边值问题的非重叠型区域分解算法  

An Non-overlapping Domain Decomposition Algorithm for Two-dimensional Bi-harmonic Boundary Value Problems over Unbounded Domain

在线阅读下载全文

作  者:周福奇[1] 王寿城[1] 

机构地区:[1]合肥工业大学数学学院,安徽合肥230009

出  处:《佳木斯大学学报(自然科学版)》2011年第3期444-446,共3页Journal of Jiamusi University:Natural Science Edition

摘  要:以二维双调和外问题为例,提出一种带圆型人工边界的非重叠区域分解算法.构造其算法并讨论相应的离散化问题的收敛性,证明算法收敛速度与有限元网格参数无关,适当选取松弛因子,算法是几何收敛的.理论分析表明,用该方法求解无界区域问题是十分有效的.In this paper,a non-overlapping domain decomposition algorithm based on the circular artificial boundary for solving the two-dimensional exterior bi-harmonic problems was offered.The algorithm was constructed and the convergence of its discrete problems was discussed.It is proved that the convergence rate of the algorithm is independent on the finite element mesh size.With proper selection of the relaxation factor,it is proved that the convergence rate of the algorithm is geometrical.Theoretical analysis shows that this method is very efficient for solving the unbounded domain problems.

关 键 词:人工边界 区域分解算法 收敛性 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象