检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《中国科学(A辑)》1999年第8期680-687,共8页Science in China(Series A)
基 金:国家自然科学基金!(批准号 :196 710 12 );国家教育委员会博士点基金资助项目
摘 要:设T ={tj}j∈Z为实序列 ,使得 {eitjξ}j∈Z构成L2 ( [-π ,π])的一个Riesz基 .设S2m(T ,R)∩L2 (R)是以T ={tj}j∈Z为非正规节点系的多项式缓增样条函数空间 .证明了S2m(T ,R)∩L2 (R)上的Marcinkiewicz Zygmund和Bernstein不等式 .并由此证得渐近关系 :E(f,Bπ ,2 ) 2 =limm→∞ E(f,S2m(T ,R) ∩L2 (R) ) 2 ,其中Bπ ,2 表示L2 (R)中指数≤π的整函数 ,即经典的Paley Wiener类 .
关 键 词:RIESZ基 整函数 缓增样条 Paley-Wiener类
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.100.196