检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜伟伟[1]
出 处:《大学数学》2011年第3期110-114,共5页College Mathematics
摘 要:一般构造矩阵值有理函数的方法是利用连分式给出的,其算法的可行性不易预知,且计算量大.本文对于二元矩阵值有理插值的计算,通过引入多个参数,定义一对二元多项式:代数多项式和矩阵多项式,利用两多项式相等的充分必要条件通过求解线性方程组确定参数,并由此给出了矩阵值有理插值公式.该公式简单,具有广阔的应用前景.The well-known algorithms of constructing matrix-valued rational interpolations use continued fractions.Their applicability is not easily forecast and they need a large amount of calculation.In this paper,for calculation of bivariate matrix-valued rational interpolations,multi-parameters are introduced and a group of polynomials with two elements,that is an algebraic polynomial and matrix-valued polynomials,are defined.By using the necessary and sufficient conditions for polynomials identity,linear equations are solved to determine the parameters and the formula of the matrix-valued rational interpolation is given.The formula is simple,so that it has a bright application future.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.209.87