检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学计算机科学与技术学院,安徽合肥230026 [2]安徽工业大学管理科学与工程学院,安徽马鞍山243002 [3]中国科学院科技政策与管理科学研究所,北京100190
出 处:《软件学报》2011年第8期1738-1748,共11页Journal of Software
基 金:安徽省教育厅重大项目基金(ZD200904)
摘 要:提出了一种基于动态小生境的自组织学习算法(dynamic niche-based self-organizing learning algorithm,简称DNSLA),实现了基于0-1编码的动态学习机制.种群中的个体由被动适应转为主动学习,即通过系统的自组织学习而实现与环境的友好交互,因而具有更强健的动态环境适应能力,能够及时、准确地侦测到环境的变化并跟踪极值点在搜索空间内的运动轨迹,具有良好的可移植性和很强的泛化能力.一系列动态测试问题的对比仿真实验结果表明,该算法即使在剧烈动荡的环境中也能很好地与环境进行稳定而友好的交互学习,表现出了很强的鲁棒性,其动态搜索能力和极值点跟踪能力远优于同类搜索方法.A dynamic niche-based self-organizing learning algorithm (DNSLA) was proposed in this paper. The dynamic learning mechanism based on 0-1 coding method was carried out, and the individuals involved in this algorithm were able to adapt to the dynamic environments through active learning, which was different from the passive adaptive search strategy in traditional evolutionary algorithms. As a result of self-organizing learning and friendly interaction with the environments, DNSLA was more robust to adapt to the dynamic problems, and it was able to accurately detect the slight changes of the environments and track the extreme points in the solution domain. A series of dynamic simulation tests for comparative experiments showed that, even in the turbulent environments, DNSLA was still able to perform friendly interactive learning with the dynamic environments. DNSLA showed a strong robustness in the comparative experiments, whose dynamic search capabilities were far superior to other search methods.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13