平面扇形域问题的新正交关系和变分原理  被引量:1

NEW ORTHOGONALITY RELATIONSHIP OF PLANE ELASTICITY IN SECTORIAL REGION AND ITS VARIATIONAL PRINCIPLE

在线阅读下载全文

作  者:侯国林[1] 阿拉坦仓[1] 

机构地区:[1]内蒙古大学数学科学学院,呼和浩特010021

出  处:《力学学报》2011年第4期731-736,共6页Chinese Journal of Theoretical and Applied Mechanics

基  金:国家自然科学基金(10962004);高等学校博士学科点专项科研基金(20070126002);内蒙古自然科学基金(20080404MS0104)资助项目~~

摘  要:通过构造新的对偶向量,用空间的环向坐标数学上比拟Hamilton体系的时间变量,在平面弹性扇形域问题中导出了一个斜对角Hamilton算子.该算子具有主对角元为零,斜对角元是非零对称算子的结构特性.得到两个独立的、对称的子正交关系.恰当选择对偶向量后,直角坐标系下各向同性平面弹性问题的新正交关系被推广到极坐标情形.根据控制微分方程的弱(积分)形式及相应的边界条件,建立了对应边值问题的变分原理,并提出了相应的泛函表达式.In the sectorial domain plane elasticity problem,an off-diagonal Hamiltonian operator is obtained by constructing new dual vectors and using virtual circumferential coordinate in spatial domain to mathematically analogize the time variable in temporal domain of Hamiltonian system.The operator possesses some structural characteristics,that is,the diagonal elements of the operator are zero and the off-diagonal ones are non-zero and symmetric.Two symmetric orthogonal sub-relationships(independent from each other)are obtained.By selecting dual vectors appropriately,the new orthogonality relationships in the rectangular coordinates are generalized into the polar coordinates for isotropic plane elasticity problems.In light of the weak(integral) form associated with the governing differential equations and corresponding boundary conditions,the variational principle for the present boundary value problem is formulated,and the functional expression is presented.

关 键 词:扇形域 正交关系 变分原理 平面弹性 HAMILTON算子 

分 类 号:O343.1[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象