检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]第二炮兵工程学院自动控制工程系,西安710025
出 处:《物理学报》2011年第8期68-74,共7页Acta Physica Sinica
基 金:国防科技预研基金(批准号:51309060302)资助的课题~~
摘 要:针对训练样本贯序输入时的极端学习机(ELM)训练问题,提出一种具有选择与遗忘机制的极端学习机(SF-ELM),并研究了其在混沌时间序列预测中的应用.SF-ELM以逐次增加新训练样本的方式实现在线训练,通过引入遗忘因子以减弱旧训练样本的影响,同时以泛化能力为判断依据,对其输出权值进行选择性递推更新.混沌时间序列在线预测实例表明,SF-ELM是一种有效的ELM在线训练模式.相比于在线贯序极端学习机,SF-ELM具有更快的在线训练速度和更高的在线预测精度,因此更适于混沌时间序列在线预测.To solve the problem of extreme learning machine (ELM) on-line training with sequential training samples,a new algorithm called selective forgetting extreme learning machine (SF-ELM) is proposed and applied to chaotic time series prediction.The SF-ELM adopts the latest training sample and weights the old training samples iteratively to insure that the influence of the old training samples is weakened.The output weight of the SF-ELM is determined recursively during on-line training procedure according to its generalization performance.Numerical experiments on chaotic time series on-line prediction indicate that the SF-ELM is an effective on-line training version of ELM.In comparison with on-line sequential extreme learning machine,the SF-ELM has better performance in the sense of computational cost and prediction accuracy.
关 键 词:混沌时间序列 时间序列预测 神经网络 极端学习机
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44