检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:扈生彪[1]
出 处:《数学的实践与认识》2011年第15期222-227,共6页Mathematics in Practice and Theory
基 金:国家自然科学基金(10861009)
摘 要:设A(G)是简单图G的邻接矩阵,H是由G的独立边和不交圈组成的生成子图的集合,e是H中某个图的独立边,C是H中图的圈,且e∈E(C).记G-e是G的删边子图,G\W是从G中删去导出子图W中的顶点及其关联边后得到的图.那么A(G)的行列式为detA(G)=detA(G-e)-detA(G\e)-2(-1)^(|V(C)|)detA(G\C)A(G)的积和式为perA(G)=perA(G-e)+perA(G\e)+2perA(G\C)这里,C取遍H中图的经过边e的圈.Let A(G) be an adjacency matrix of simple undirected graph G, H is a set of spanning subgraph of G consisting of disjoint edges and cycles, e is a disjoint edge of some graph in H , C is cycle of graph in H ,and e ∈ E(C). G - e is the subgraph of G obtained by deleting the edge e, G / W is the subgraph of G obtained by deleting the vertices in W and all edges incident with them. Then the determinant of A(G) is detA(G)=detA(G-e)-detA(G/e)-2∑ c(-1)^|V(C)|detA(G/C) A(G) Thepermanent of A(G) is perA(G)=perA(G-e)+perA(G/e)+2∑ cperA(G/C) Where,C ranges over the cycles of pass through the edge e of graphs in H.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38