基于条件互信息下聚类的朴素贝叶斯分类算法  被引量:4

Naive Bayesian classification algorithm based on clustering with conditional mutual information

在线阅读下载全文

作  者:彭兴媛[1] 刘琼荪[1] 王立威[1] 

机构地区:[1]重庆大学数学与统计学院,重庆401331

出  处:《云南大学学报(自然科学版)》2011年第5期517-520,共4页Journal of Yunnan University(Natural Sciences Edition)

基  金:中央高校基本科研业务费资助(CDJXS11100050)

摘  要:采用条件互信息来度量任意2个条件属性之间的关联程度,采用互信息度量各条件属性与类属性间的关联程度,以此作为将各条件属性进行聚类的准则,提出一种新的将条件属性进行聚类的分组技术.同时,结合朴素贝叶斯分类算法,构造了改进的朴素贝叶斯分类模型.通过仿真实验表明该文提出的算法具有较好的分类性能.In this paper,the correlation intensity of two arbitrary conditional attributes was measured by conditional mutual information,and the correlation intensity between every conditional attribute and classification attribute was measured by mutual information.On that criterion to cluster the conditional attributes,a new grouping method to cluster the conditional attributes was proposed.Simultaneously,combined with naive bayes classification algorithm,an improved naive bayes classification model was constructed.Simulation results showed the efficiency of this method is preferable.

关 键 词:关联程度 聚类算法 条件互信息 互信息 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象