检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《上海师范大学学报(自然科学版)》2011年第2期117-124,共8页Journal of Shanghai Normal University(Natural Sciences)
基 金:supported by the Shanghai University Academic Discophice Project(T04101);Shanghai Municopal Education Commission(06DZ001)
摘 要:运用两步Runge-Kutta方法求解广义中立型延时微分代数方程的渐近稳定性.首先对GNDDAEs系统进行了介绍Ax(′t)+Bx(t)+Cx(′tτ)+Dx(tτ)=0,这里x(t)=(x1(t),x2(t),…,xd(t))T,x(tτ)=(x1(t-τ1),x2(t-2τ),…,xd(t-τd))T,然后通过系统方程的特征多项式讨论了它的解析解的稳定性,并得出了解析解渐近稳定所需满足的渐近稳定性条件;其次,介绍了两步Runge-Kutta方法,通过普通的实验方程得出两步方法渐近稳定所需要满足条件的稳定性区域;再次,把两步Runge-Kutta方法运用到系统方程中,通过系统的特征多项式讨论和渐近稳定性条件分析,得出了它们稳定所需满足的渐近稳定性条件;最后,通过数值实验计算验证了稳定性条件.由于系统方程的复杂性,所得结果更具有普遍性.We consider the asymptotic stability of two-step Runge-Kutta methods for generalized neutral delay differential-algebraic equations,which have different delays in the entries of the vector valued unknown functions.Thus our results are more general than those already reported.
关 键 词:渐进稳定性 中立型延迟微分代数方程 两步Runge-Kutta方法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.22.62