检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张俊雄[1] 吴科斌[1] 宋鹏[1] 李伟[1] 陈绍江[2]
机构地区:[1]中国农业大学工学院,北京100083 [2]国家玉米改良中心,北京100094
出 处:《江苏大学学报(自然科学版)》2011年第6期621-625,共5页Journal of Jiangsu University:Natural Science Edition
基 金:国家"863"高技术研究发展计划项目(2010AA101401);国家自然科学基金资助项目(31071320)
摘 要:以单倍体育种产生的经遗传标记后的玉米品种1050-37为研究对象,研究种子图像的颜色模式类别,将单个玉米种子划分为紫色标记区域、黄色区域和白色区域进行分析.通过分析图像在归一化rgb,HSV模型下的不同颜色特征,选取其中7个作为输入特征参数,构建了一种3层BP神经网络模型,从而实现玉米单倍体种子图像的有效分割.试验表明:该模型对紫色标记区域、黄色区域和白色区域的准确识别率分别为97.61%,93.34%和94.09%;所提取的紫色标记区域对单倍体与杂合体的识别是有效且可靠的.Based on BP neural network of maize haploid seeds,an image segmentation method was proposed to research 1050-37 corn with genetic marks.According to color features,corn seed images were divided into three color patterns of purple area,yellow area and white area.Different color features of normalized rgb and HSV color space were analyzed,and 7 features were chosen as input parameters to establish a BP neural network model with 3 layers to achieve effective image segmentation of maize haploid seeds.The experiments show that the classification accuracies of the model are 97.61% for purple marks area,93.34% for yellow area and 94.09% for white area,respectively.The purple marks area acquired by BP NN is effective and reliable for the identification of haploid kernels and hybrid kernels.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3