基于神经网络的修正“当前”统计模型算法  

Improved Current Statistical Model Algorithm Based on Neural Network

在线阅读下载全文

作  者:徐奇[1] 王树亮[1] 何志宣[1] 

机构地区:[1]中国人民解放军73678部队

出  处:《现代防御技术》2011年第6期147-151,共5页Modern Defence Technology

摘  要:"当前"统计模型及其自适应卡尔曼滤波算法虽能对强机动目标进行较好跟踪,但存在对弱机动目标跟踪误差较大的缺陷。针对这一问题,在推导传统"当前"统计模型适用范围的基础上,对"当前"加速度的概率密度函数进行改进,得到一种修正的"当前"统计模型算法。为克服算法对加速度极限值的依赖,进一步提高跟踪精度,利用神经网络将2种参数信息融合,通过其输出对系统方差作加权调整。仿真结果表明,不论是对弱机动目标还是强机动目标,新算法较传统的算法都有较高的跟踪精度。The current statistical model and adaptive Kalman filtering algorithm operates well in tracking strong maneuvering targets well but makes bigger error in tracking weak maneuvering targets. To solve this issue, an applicable bound of conventional current statistical model is derived. Based on the derivation, the current acceleration' s probability density function is improved and an improved current statistical model tracking algorithm is proposed. To overcome its limitation on acceleration and further im- prove its tracking precision, two sources of information are fused by using the neural network. Then the output of the network is used to adjust the system variance. Simulation results show that the proposed algorithm is better in tracking not only the weak maneuvering targets, but also the strong maneuvering targets.

关 键 词:当前统计模型 机动目标跟踪 神经网络 信息融合 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TN713[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象