基于小波分解自回归模型的CPI预测  被引量:14

在线阅读下载全文

作  者:陈升[1] 李星野[1] 

机构地区:[1]上海理工大学管理学院,上海200093

出  处:《统计与决策》2012年第1期18-20,共3页Statistics & Decision

摘  要:文章利用小波分析与自回归模型相结合的方法来建模分析时间序列,这种方法主要是在尺度函数逼近和自回归模型的基础上建立的。小波分析提供了一种多尺度函数逼近的方法,而自回归模型能够预测时间序列。文章的对CPI序列进行了离散小波分解,并重构得到了尺度序列和每层的细节序列;然后分别对其建立自回归模型并预测每个序列的下一个值,将得到的预测值相加得到了CPI预测值,再用预测值,利用建立的模型进行预测;最后,用标准差来衡量估计量的好坏。

关 键 词:时间序列 模型法 预测 小波分解 多项式算子 自回归模型 

分 类 号:O212.1[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象