检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]辽宁工程技术大学电气与控制工程学院,葫芦岛125000
出 处:《计算机系统应用》2012年第1期127-131,共5页Computer Systems & Applications
摘 要:为了进一步提高RBF神经网络的性能,实现准确、快速预测短期电力负荷的目的,将蚁群优化算法(ACOA)作为RBF神经网络的学习算法,建立了一种新的蚁群优化算法的RBF(ACOA-RBF)网络预测模型,利用山西某地区电网的历史数据进行短期负荷预测。仿真表明,这一算法与传统的RBF神经网络预测方法相比,能达到更好的预测效果。该优化算法改善了径向基神经网络的泛化能力,提高了山西电网短期负荷预测的精度,可有效用于电力系统的短期负荷预测。To improve the capacity of RBF neural network and make short-term load forecasting more accurate and faster,a neural network ant colony optimization algorithm and Radial Basis Function neural network forecasting model is established by using the ant colony optimization algorithm to train the RBF neural network.Using the method and history load data of shanxi power system,the short-term load forecasting was carried out.The simulation results show that the forecasting results by the proposed method are better than those by RBF neural network method.The optimization algorithm improves the RBF neural network generation capacity,and the short-term load forecasting accuracy is improved in Shanxi power system.So it can be effectively used in short-term load forecasting of power system.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222