检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程立新[1]
出 处:《应用泛函分析学报》2011年第4期349-350,391,共3页Acta Analysis Functionalis Applicata
基 金:Supported partially by the National Natural Science Foundation of China(11071201)
摘 要:从泛函分析观点来看Lebesgue积分,使得Lebesgue积分可以用泛函分析最简单最基本的方法独立导出.基本做法是将Riemann对于区间[0,1]上的连续函数的积分看成连续函数空间C[0,1]上的连续线性泛函,再将它"自然"延拓到C[0,1]在积分范数意义下的完备化空间,而这个完备化空间正是Lebesgue可积函数空间L_1[0,1].This note is devoted to describe the classical Lebesgue integration from a functional point of view. Let C[0, 1] be the linear space of all real-valued continuous functions endowed with the norm ||x|| = f0^1 |x(t)|dt and let X = C[0, 1] be its completion. We define a linear functional xR^* on C[0, 1] by {xR^*, x) = fg x(t)dt in Riemann's sense, and let x* be the natural extension of xR^* from C[0, 1] to its completion C[0, 1]. With a sketch but self-contained proof, we show the Lebesgue integration is just the natural extension of xR^* to C[0, 1], that is, C[0, 1] = L1[0, 1] and (x*, xI =- f0^1 x(t)dt in Lebesgue's sence.
关 键 词:LEBESGUE积分 LEBESGUE测度 线性泛函
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31