检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]海军装备研究院,北京100161 [2]国防科技大学机电工程与自动化学院,长沙410073
出 处:《北京科技大学学报》2012年第1期76-79,共4页Journal of University of Science and Technology Beijing
基 金:国防基础科研资助项目(D2820061301);国家自然科学基金资助项目(60805037)
摘 要:针对一类双波动鳍仿生水下机器人的姿态镇定问题,提出一种基于增强学习的自适应PID控制方法.对增强学习自适应PID控制器进行了具体设计,包括PD控制律和基于增强学习的参数自适应方法.基于实际模型参数对偏航角镇定问题进行了仿真试验.结果表明,经过较小次数的学习控制后,仿生水下机器人的偏航角镇定性能得到明显改善,而且能够在短时间内对一般性扰动进行抑制,表现出了较好的适应性.A reinforcement learning based adaptive PID controller was presented for the attitude stabilization of a kind of bionic underwater robot with two bionic undulating fins. The scheme of the reinforcement learning based adaptive PID controller was given concretely including the control law and the parameter adaptive method based on reinforcement learning. Simulation experiments of yaw angle stabilization based on actual model parameters were carried out. The results indicate that the stabilization performance of yaw angle is improved distinctly after several iterations of learning control and the controller can overcome ordinary disturbances in short time, exhibiting its preferable adaptability.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117