检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京大学,江苏南京210093
出 处:《现代电子技术》2012年第2期54-57,共4页Modern Electronics Technique
基 金:中央高校基本科研业务费专项资金资助项目(1117021003)
摘 要:为了实现自动识别人体跌倒行为的目的,采用深度摄像头同时获取彩色图像和深度图像,并对其进行校正;对深度图像采用背景差分法提取运动人体前景;利用彩色图像和深度图像的融合、肤色检测以及距离加权面积法进行头部的检测与定位;最后将头部运动速度作为判断跌倒的依据,对人体不同运动行为的头部速度进行采集,利用支持向量机对跌倒进行检测。以5个志愿者的步行、蹲下、坐下和跌倒等4类动作为实验样本,运用交叉比对确定最优化参数,最后采用本文提出的方法进行测试。实验结果表明,系统能够有效识别跌倒,总体识别率超过95%。其中,跌倒/步行行为分类识别率达100%;针对跌倒/蹲下和跌倒/坐下的系统平均识别率分别为94.4%和98.8%。In order to achieve automatic recognition of human fall behaviour, the depth camera is used to obtain color images and depth images, which are corrected by the presented system. The foreground of moving human are extracted from the depth images by the background difference method, and then the head are detected with the fusion of color images and depth images, color detection and distance-weighted area method. Finally, by taking the head moving speed as the criterion of tumbling down, the head moving speed in human's various behaviors is acquired for detecting the fall by SVM. With the experimental samples, such as the walking, squating, sitting down and (ailing of five volunteers, some experiments were carried out and the optimal parameters were confirmed with cross-contrast. The results show that the system can effectively identify the human's tumbling down, the overall recognition rate is over 95%, and the classification recognition rate is: falling vs walking=100%, falling vs squating = 94, 4 %and falling vs siting down = 98.8%.
分 类 号:TN919-34[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15