检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河南师范大学数学与信息科学学院,河南新乡453007
出 处:《应用数学》2012年第1期126-130,共5页Mathematica Applicata
基 金:国家自然基金(11171094);河南省科技创新杰出青年基金(09410050001)
摘 要:本文针对一类带有反凸约束的非线性比式和分式规划问题,提出一种求其全局最优解的单纯形分支和对偶定界算法.该算法利用Lagrange对偶理论将其中关键的定界问题转化为一系列易于求解的线性规划问题.收敛性分析和数值算例均表明提出的算法是可行的.This paper presents a simplicial branch and duality bound algorithm for globally solving a class of the sum of nonlinear ratios fractional programming problems with reverse convex constraints.The algorithm uses Lagrange duality theory to convert the bounding subproblems during the algorithm into a series of linear programming problems,which can be solved very efficiently.The convergence analysis and numerical examples show that the proposed algorithm is feasible.
分 类 号:O221.2[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.164.253