检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李明迅[1] 孟相如[1] 袁荣坤[1] 温祥西[1] 陈新富[1]
出 处:《计算机应用》2012年第2期340-342,346,共4页journal of Computer Applications
基 金:陕西省自然科学基金资助项目(SJ08F14;2009JQ8008)
摘 要:针对网络流量数据被噪声污染而无法进行准确建模与预测的问题,将提升小波降噪(LWD)技术和在线最小二乘支持向量机(LSSVM)相结合,提出了一种网络流量的集成式在线预测方法。该方法首先对采集的流量数据进行降噪,然后采用相空间重构理论计算流量的时延、嵌入维数,据此确定训练样本并建立在线预测模型,对网络流量数据进行预测。实验结果表明,该方法能有效滤除流量噪声,实现在线预测,提高预测精度。Concerning the problem that the network traffic data has been pollfited by noise so that accurate modeling and predicting cannot be achieved, an integrated network traffic online predicting method based on lifting wavelet de-noising and online Least Squares Support Vector Machines (LSSVM) was proposed. First, the Lifting Wavelet De-noising (LWD) was used to pre-process network traffic data, then the phase space reconstruction theory was introduced to calculate the delay time and embedded dimension. On this basis, the training samples were formed and the online LSSVM prediction model was constructed to predict the network traffic. The experimental results show that this prediction model can eliminate the noise effectively and predict the network traffic.
关 键 词:网络流量预测 提升小波降噪 最小二乘支持向量机 在线算法
分 类 号:TP393.06[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.138.194.97