检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学信息科学与技术学院,江苏南京210016
出 处:《计算机与现代化》2012年第2期1-4,7,共5页Computer and Modernization
基 金:国家863计划资助项目(2009AA044601)
摘 要:网络信息规模随着互联网与信息技术的发展而不断增大,在这些信息中,各种类型的文本信息占据了相当大的比重。因此,高效、快速地对文本信息进行分类是网络信息处理中一个关键问题。本文分析比较了SVM算法、朴素Bayes算法和KNN算法3种算法,并通过实验证明了这3种算法在中文文本分类中的效果。实验结果表明:SVM算法比KNN算法和朴素Bayes算法更优,SVM算法是一种较好的中文文本分类算法。With the development of Internet and information technology,network information scale is explosively increasing.Among various type of information,the type of texts occupy a considerable proportion.Therefore,efficient and rapid classification and processing of text information in the network become a key issue.The paper analyzes and compares SVM algorithm,Bayes algorithm and KNN algorithm.By the experiments of the three algorithms in Chinese text classification,the results indicate SVM algorithm is superior than KNN algorithm and Bayes algorithm,SVM algorithm is an excellent Chinese text classification algorithm.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222