机构地区:[1]Center for Hearing and Deafness, State University of New York at Buffalo [2]Departments of Aging and Geriatric Research, Division of Biology of Aging, University of Florida [3]Department of Otolaryngology Head and Neck Surgery, Huashan Hospital Affiliated Fudan University [4]Department of Otolaryngology Head and Neck Surgery, Six People's Hospital of Shanghai Jiao Tong University [5]Graduate School of Agricultural and Life Sciences, University of Tokyo [6]Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University
出 处:《Journal of Otology》2011年第1期1-9,共9页中华耳科学杂志(英文版)
摘 要:Objective To investigate the occurrence and possible mechanisms of apoptosis in cochlear epithelium and spiral ganglion neurons after mefloquine treatment. Methods We used quantitative RT-PCR apoptosis-focused gene arrays (96-well, 84 apoptosis related genes) to assess changes of gene expression in the cochlear basilar membrane (hair cells-supporting cells) and spiral ganglion neurons of rat cochlear organotypic cultures treated with 100 IxM mefloquine for 3 h. Results Significant up-or down-regulation in gene expression was detected in 23 genes in the cochlear basilar membrane, and in 32 genes in the spiral ganglion neurons compared with time-matched controls. The responding genes could be classified as pro-or anti-apoptotic, and were mainly implicated in the Bcl-2, Caspase, Card, IAP, TNF ligand / TNF receptor, Death domain / Death effector domain, DNA damage / p53, and NF-kappa B families. Synthetic analysis suggested that these families could be revised to two major pathways mainly involved in t]he death receptor-mediated signaling pathway and apoptotic mitochondrial pathway. In addition, it was found that numerous anti-apoptotic genes such as Bcl2al, Birclb, Birc3, Birc4, Bnipl, Cflar, II10, Lhx4, Mcll, Nfkbl, Prlr, Prok2, and TNF were greatly up-regulated in the cochlear tissue, which might imply the co-existence of protective response in the ceils at the early stage of mefloquine-induced damage.Objective To investigate the occurrence and possible mechanisms of apoptosis in cochlear epithelium and spiral ganglion neurons after mefloquine treatment. Methods We used quantitative RT-PCR apoptosis-focused gene arrays (96-well, 84 apoptosis related genes) to assess changes of gene expression in the cochlear basilar membrane (hair cells-supporting cells) and spiral ganglion neurons of rat cochlear organotypic cultures treated with 100 IxM mefloquine for 3 h. Results Significant up-or down-regulation in gene expression was detected in 23 genes in the cochlear basilar membrane, and in 32 genes in the spiral ganglion neurons compared with time-matched controls. The responding genes could be classified as pro-or anti-apoptotic, and were mainly implicated in the Bcl-2, Caspase, Card, IAP, TNF ligand / TNF receptor, Death domain / Death effector domain, DNA damage / p53, and NF-kappa B families. Synthetic analysis suggested that these families could be revised to two major pathways mainly involved in t]he death receptor-mediated signaling pathway and apoptotic mitochondrial pathway. In addition, it was found that numerous anti-apoptotic genes such as Bcl2al, Birclb, Birc3, Birc4, Bnipl, Cflar, II10, Lhx4, Mcll, Nfkbl, Prlr, Prok2, and TNF were greatly up-regulated in the cochlear tissue, which might imply the co-existence of protective response in the ceils at the early stage of mefloquine-induced damage.
关 键 词:MEFLOQUINE OTOTOXICITY APOPTOSIS COCHLEA spiral ganglion neurons hair cells gene expression
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...