检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:鲁珊[1] 雷英杰[1] 孔韦韦[1] 雷阳[1] 郑寇全[1]
出 处:《吉林大学学报(工学版)》2012年第2期434-439,共6页Journal of Jilin University:Engineering and Technology Edition
基 金:国家自然科学基金项目(60773209)
摘 要:提出一种基于模糊核聚类的鲁棒性基础矩阵估计算法。算法提取匹配点的余差作为特征,利用核函数将一维非线性可分特征映射到高维可分空间,在高维特征空间利用模糊均值分类将匹配点分为内点集和外点集;用高斯函数分别对已分类的内点集和外点集进行建模,定义并计算两类高斯分布的可分性判定值;判断该判定值是否收敛,如未收敛则以内点集作为初始值重新迭代计算。模拟数据和真实数据的基础矩阵估计实验表明,本文算法在计算效率和精度上均优于经典的随机抽样一致性算法。A robust fundamental matrix estimation algorithm based on kernel fuzzy clustering is proposed. The residual features of match points are detected by this algorithm. Using the kernel functions, the nonlinear dividable features in the original one-dimensional space can be mapped to a high-dimensional feature space, in which the clustering can be performed effectively. The match points are classified into inliers and outliers by the fuzzy clustering method. The inliers and the outliers are modeled by Gaussian function, and the judgment values of the divisibility of the two sets are defined and calculated. The iteration will continue until the judgment value converges. Experimental results of the fundamental matrix computation on both simulated and real data demonstrate the superiority of the proposed algorithm in precision and efficiency over classical RANdom SAmple Consensus (RANSAC) algorithm.
关 键 词:计算机应用 基础矩阵 鲁棒性 模糊核聚类 特征匹配
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.127