检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]装甲兵工程学院控制工程系
出 处:《装甲兵工程学院学报》2012年第1期55-58,共4页Journal of Academy of Armored Force Engineering
基 金:军队科研计划项目
摘 要:针对粒子滤波器存在的粒子贫乏问题,提出了一种基于云模型改进的遗传重采样方法。选择操作采用相隔一定代数进行随机采样的方式,防止选择压力过大导致粒子贫化;利用Y云发生器实现变异操作,根据粒子的观测概率自适应控制搜索范围,在现有粒子的附近搜索精良粒子,在提高粒子有效性的同时增加了粒子的多样性。仿真结果表明:改进后的算法有效地解决了粒子的贫乏问题,提高了滤波性能。To solve sample impoverishment problem in particle filter application,this paper presents a new genetic resampling algorithm based on cloud model.Random sampling algorithm is brought into selection operation,and particles are selected one time after several iterations to solve sample impoverishment problem caused by too much selection pressure.Y cloud generator is used to realize mutation operation and according to the adaptive control searching area of the observation probability of particles,eminent particles near existing particles can be searched,then particles' validity and variety are both improved.The experimental result shows that this algorithm has solved the sample impoverishment problem and improved the filter accuracy.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229