结合Mean-Shift和Particle Filter的鲁棒跟踪算法  

Robust Tracking Algorithm United by Combining Mean-Shift and Particle Filter

在线阅读下载全文

作  者:王建华[1] 冯帆[1] 梁伟[2] 王惠萍[1] 

机构地区:[1]白求恩医务士官学校基础部计算机教研室,石家庄050081 [2]军械工程学院光学与电子工程系,石家庄050003

出  处:《现代计算机》2012年第4期3-5,8,共4页Modern Computer

摘  要:Mean-Shift算法在图像跟踪领域得到广泛应用,但有遮挡情况发生时,算法容易陷入局部最大值。Particle Filter作为一种基于贝叶斯估计的算法,在处理非线性运动目标跟踪问题上具有特殊的优势,但该算法计算量大,实时处理能力差。鉴于此,将两种算法相结合,提出一种以重要性函数为切入点将Mean-Shift和Particle Filter相结合的跟踪算法,首先利用Mean-Shift算法跟踪目标,利用目标与模板的相似性系数实时判断,当有遮挡发生时,算法转向Particle Filter进行后续跟踪。实验结果表明,该算法实时性强,跟踪效率高,具有很强的实用性。Mean-Shift algorithm is widely used in image tracking field, but when occlusion occurs, it is easy to fall into local maxium. As an algorithm based upon Bayesian estimation, particle filtering is perdominant on tracking nonlinear moving object, but because of its huge computation, its real-time processing capacity is low. So proposes a kind of tracking algorithm which combines Mean-Shift and Particle Filter by essentiality function. Mean-Shift is used to track object firstly, and real-time judgement is made by the comparability coefficient. If occlusion occurs, algorithm turns to particle filtering to track. Experiment result indicates that the algorithm takes on high efficiency, so it is of high practicability.

关 键 词:目标跟踪 均值平移 粒子滤波 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象