检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]桂林理工大学,广西541004
出 处:《网络安全技术与应用》2012年第3期42-43,共2页Network Security Technology & Application
摘 要:本文针对单个BP神经网络在文本分类中准确率较低的问题,通过级联多个BP神经网络,利用Adaboost算法调整各个BP弱分类器的权值,从而获得了一个稳定、高效的BP_Adaboost强分类器。实验结果现实:BP_Adaboost文本分类准确率比BP神经网络提高了9.09%。Contraposing the lower text classification accuracy by BP neural network,use the Adaboost algorithm to adjust the weights of the BP classifier to obtain a stable,the efficient a strong classifier.The experimental results: BP_Adaboost text classification accuracy increased by 9.09 percent than the BP neural network.
关 键 词:BP神经网络 ADABOOST算法 文本分类
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15