带有稳定学习的递归神经网络动态偏最小二乘建模  被引量:14

Dynamic partial least squares modeling with recurrent neural networks of stable learning

在线阅读下载全文

作  者:王魏[1] 柴天佑[1,2] 赵立杰[1,3] 

机构地区:[1]东北大学流程工业综合自动化国家重点实验室,辽宁沈阳110819 [2]东北大学自动化研究中心,辽宁沈阳110819 [3]沈阳化工学院信息工程学院,辽宁沈阳110142

出  处:《控制理论与应用》2012年第3期337-341,共5页Control Theory & Applications

基  金:国家重点基础研究发展计划资助项目(2009CB320601);国家自然科学基金资助项目(61020106003;60904079;61004009);国家创新研究群体科学基金资助项目(60821063);高等学校学科创新引智计划资助项目(B08015);中国博士后自然科学基金资助项目(20100471464)

摘  要:针对目前非线性动态偏最小二乘(PLS)建模方法在拟合较强非线性化工过程时存在的问题,提出一种基于稳定学习的递归神经网络动态PLS建模方法.该算法将递归神经网络与Hammerstein模型相结合,对外部PLS提取的特征向量进行内部建模,具有逼近较强非线性化工过程的能力,改善了模型的适用范围.此外,采用带有稳定学习的参数更新算法对模型参数进行在线修正,改善了模型的预测精度和自适应能力.将此方法应用于氧化铝生产过程铝酸钠溶液组分浓度建模实验,仿真结果表明,本方法是可行有效的.A dynamic modeling algorithm is proposed for a strongly nonlinear chemical process, it is based on partial least squares (PLS) and recurrent neural networks with a stable learning rate. The outer PLS algorithm reduces the dimen- sionality of data and extracts score vector, and the inner model which combines recurrent neural networks with Hammerstein model captures the nonlinear characters to extend the model application scope. Besides, the stable learning algorithm up- dates the model parameters to improve the prediction precision and adaptation ability. This method is implemented in the process of alumina production to measure the component concentrations of sodium aluminate solution. Simulation results show that the modeling method is effective.

关 键 词:偏最小二乘 递归神经网络 HAMMERSTEIN模型 软测量 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象