检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南大学数学与统计学院,重庆400715 [2]绵阳东辰国际学校高中部,四川绵阳221000
出 处:《绵阳师范学院学报》2012年第2期11-12,15,共3页Journal of Mianyang Teachers' College
基 金:国家自然科学基金资助项目(10771172)
摘 要:该文主要利用CC-子群的存在性来刻画有限群。首先,从CC-子群的存在性推导了一部分已知阶群的结构;其次,推导了当次正规子群和正规子群为CC-子群时的有限群的简单结构,得到了以下主要结论:定理1(1)若|G|=pq,p,q为素数,若G无CC-子群,则G为交换群。(2)若|G|=p2qn,p,q为奇素数,若G的CC-子群个数为1,则G为q幂零群.定理2设G为有限可解群,若G的每个次正规子群均为CC-子群,则|G|=pq。定理3设G为有限可解群,若G的每个正规子群为CC-子群,那么|G|=pqn,G=<a>G',其中,<a>为p阶子群。In this paper,the existence of CC-subgroups is used to describe finite groups.First,the structure of some already-known finite groups is deduced;then,by deducing the simple structure of the finite groups when its subnormal subgroups and normal subgroups are CC-subgroups respectively,the following conclusions are derived: Theorem one(1) if |G|=pq,p,q is prime number and G has no CC-subgroups,hence G is Abel.(2) if |G|=p2qn,p,q is odd prime,and G has only one CC-subgroups and then G is a nilpotent.Theorem two: G is a finite solvable group and every subnormal group is CC-subgroups,p,q are prime then |G|=pq.Theorem three: G is a finite solvable group and every normal subgroups of G are CC-subgroups,then |G|=pqn,G=〈a〉G′,p,q are prime,〈a〉 is a subgroup of order p.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.81.212