检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津大学计算机科学与技术学院,天津300072
出 处:《计算机研究与发展》2012年第4期746-753,共8页Journal of Computer Research and Development
基 金:国家自然科学基金项目(61170019);天津市自然科学基金项目(11JCYBJC00700)
摘 要:核矩阵计算是求解支持向量机的关键,已有精确计算方法难以处理大规模的样本数据.为此,研究核矩阵的近似计算方法.首先,借助支持向量机的凸二次约束线性规划表示,给出支持向量机和多核支持向量机的二阶锥规划表示.然后,综合Monte Carlo方法和不完全Cholesky分解方法,提出一个新的核矩阵近似算法KMA-α,该算法首先对核矩阵进行Monte Carlo随机采样,采样后不直接进行奇异值分解,而是应用具有对称置换的不完全Cholesky分解来计算接近最优的低秩近似.以KMA-α输出的近似核矩阵作为支持向量机的输入,可提高支持向量机二阶锥规划求解的效率.进一步,分析了KMA-α的算法复杂性,证明了KMA-α的近似误差界定理.最后,通过标准数据集上的实验,验证了KMA-α的合理性和计算效率.理论分析与实验结果表明,KMA-α是一合理、有效的核矩阵近似算法.The computation of kernel matrices is essential for solving the support vector machines(SVM).Since the previous accurate approach is hard to apply in large-scale problems,there has been a lot deal of recent interests in the approximate approach,and a new approximation algorithm for the computation of kernel matrices is proposed in this paper.Firstly,we reformulate the quadratic optimization for SVM and multiple kernel SVM as a second-order cone programming(SOCP) through the convex quadratically constrained linear programming(QCLP).Then,we synthesize the Monte Carlo approximation and the incomplete Cholesky factorization,and present a new kernel matrix approximation algorithm KMA-α.KMA-α uses the Monte Carlo algorithm to randomly sample the kernel matrix.Rather than directly calculate the singular value decomposition of the sample matrix,KMA-α applies the incomplete Cholesky factorization with symmetric permutation to obtain the near-optimal low rank approximation of the sample matrix.The approximate matrix produced by KMA-α can be used in SOCP to improve the efficiency of SVM.Further,we analyze the computational complexity and prove the error bound theorem about the KMA-αalgorithm.Finally,by the comparative experiments on benchmark datasets,we verify the validity and the efficiency of KMA-α.Theoretical and experimental results show that KMA-α is a valid and efficient kernel matrix approximation algorithm.
关 键 词:支持向量机 核方法 二阶锥规划 矩阵近似计算 CHOLESKY分解
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33