检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]青岛理工大学临沂校区机电系,山东临沂273400 [2]青岛恒星职院自动化学院,山东青岛266100
出 处:《纺织科技进展》2012年第2期49-52,共4页Progress in Textile Science & Technology
摘 要:针对常见织物疵点具有方向性,利用传统空间域特征识别方法不能有效定位局部疵点区域且当样本较少时分类率低的问题,为有效定位疵点且提高分类率,提出了水平和垂直方向上小波域特征,利用能有效解决小样本分类问题的支持向量机进行分类识别;并对利用图像灰度共生矩阵特征及小波域特征的分类结果进行了比较。仿真实验结果表明,所选特征不仅能对织物疵点区域进行水平和垂直方向上的定位,而且得到了较高的正确分类率。In view of that common fabric defects have directivity,it used the problems that traditional spatial characteristics can not effectively locate defect region and the accuracyis always unsatisfactory when samples are less,and in order to effectively locate faults and improve the classification rate,it proposed a method of wavelet domain features on the horizontal and vertical direction,used support vector machine to effectively solve limited sample classification problem,compared classification results between the traditional features of GLCM(gray level co-occurrence matrix)and wavelet domain features.Experiment results showed that using wavelet features can locate the areas of fabric defects on the horizontal and vertical position and also can receive a higher classification accurate.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.34.100