基于小波特征和SVM的织物疵点识别  被引量:2

Fabric Defects Identification Based on Wavelet Transform and SVM

在线阅读下载全文

作  者:赵静[1] 高伟 欧付娜[1] 武善清[1] 

机构地区:[1]青岛理工大学临沂校区机电系,山东临沂273400 [2]青岛恒星职院自动化学院,山东青岛266100

出  处:《纺织科技进展》2012年第2期49-52,共4页Progress in Textile Science & Technology

摘  要:针对常见织物疵点具有方向性,利用传统空间域特征识别方法不能有效定位局部疵点区域且当样本较少时分类率低的问题,为有效定位疵点且提高分类率,提出了水平和垂直方向上小波域特征,利用能有效解决小样本分类问题的支持向量机进行分类识别;并对利用图像灰度共生矩阵特征及小波域特征的分类结果进行了比较。仿真实验结果表明,所选特征不仅能对织物疵点区域进行水平和垂直方向上的定位,而且得到了较高的正确分类率。In view of that common fabric defects have directivity,it used the problems that traditional spatial characteristics can not effectively locate defect region and the accuracyis always unsatisfactory when samples are less,and in order to effectively locate faults and improve the classification rate,it proposed a method of wavelet domain features on the horizontal and vertical direction,used support vector machine to effectively solve limited sample classification problem,compared classification results between the traditional features of GLCM(gray level co-occurrence matrix)and wavelet domain features.Experiment results showed that using wavelet features can locate the areas of fabric defects on the horizontal and vertical position and also can receive a higher classification accurate.

关 键 词:小波变换 特征提取 疵点检测 分类率 定位 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象