检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐勇[1,2] 秦小麟[1] 杨一涛[1] 杨种学[1] 黄灿[1]
机构地区:[1]南京航空航天大学信息科学与技术学院,南京210016 [2]安徽财经大学计算机科学与技术系,安徽蚌埠233030
出 处:《计算机研究与发展》2012年第5期913-924,共12页Journal of Computer Research and Development
基 金:国家自然科学基金项目(60673127);国家"八六三"高技术研究发展计划基金项目(2007AA01Z404);高等学校博士学科点专项科研基金项目(20103218110017);江苏省科技支撑计划基金项目(BE2008135);安徽高校省级自然科学研究重大项目(KJ2010ZD01)
摘 要:k-匿名模型是数据发布领域用于对原始待发布数据集进行匿名处理以阻止链接攻击的有效方法之一,但已有的k-匿名及其改进模型没有考虑不同应用领域对匿名发布表数据质量需求不同的问题.在特定应用领域不同准码属性对基于匿名发布表的数据分析任务效用的贡献程度是不同的,若没有根据发布表用途的差异区别处理各准码属性的泛化过程,将会导致泛化后匿名发布表数据效用较差、无法满足具体数据分析任务的需要.在分析不同应用领域数据分析任务特点的基础上,首先通过修正基本ODP目录系统建立适用于特定问题领域的概念泛化结构;然后在泛化过程中为不同准码属性的泛化路径设置权重以反映具体数据分析任务对各准码属性的不同要求;最后设计一种考虑属性权重的数据匿名发布算法WAK(QI weight-aware k-anonymity),这是一种灵活地保持匿名发布表数据效用的隐私保护问题解决方案.示例分析和实验结果表明,利用该方案求解的泛化匿名发布表在达到指定隐私保护目标的同时,能够保持较高的数据效用,满足具体应用领域特定数据分析任务对数据质量的要求.In recent years, publishing data about individuals without revealing their identity information has become an active issue, and k-anonymity based models are the effective techniques that can prevent linking attacks. Most of the previous works, however, focus on the efficiency and the scope of application of the models. Specific requirements of quality of published microdata for the analyzing task in various scenarios and the difference of contributions of each QI attribute to the result have not been addressed. If the contribution of different generalizing paths and orders of QI attributes has not been considered, the published microdata may have bad utility in the application. Paying more attention to them, which makes the published table have different utility, is valuable. By analyzing the differences among several application areas, a scheme which provides an effective and secure tradeoff of privacy and utility, is proposed. Firstly the basic ODP is revised to indicate the characters of special domain. Secondly, the weight on quasi-attribute is introduced to reflect the effect for the data analyzing task. And then QI weight-aware k-anonymity (WAK), which is an algorithm based on the weight of attribute, is introduced. Theoretical analysis and experimental results testify that the scheme is effective and can preserve privacy of the sensitive data well, meanwhile maintaining better data utility.
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46