检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《软科学》2012年第4期114-117,共4页Soft Science
基 金:国家社会科学基金一般资助项目(05BJY021)
摘 要:以我国制造业上市公司为样本数据,用支持向量机作为基分类器的集成学习方法来预测企业的财务危机,通过具体实验分析可知:集成学习比单个基分类器的预测准确率提高了4个百分点,且稳定性更高,有效地提高了模型的预测精度,使得模型更具有准确性和应用性。基于支持向量机的集成学习方法在构建我国制造业上市公司财务危机预警模型上是有效的,且达到一定的财务危机预警效果。Taking listed manufacturing companies in China as the sample,the Ensemble Learning Method by which Support Vector Machine serves as base classifiers can be used to predict enterprise financial crisis.It can be seen from the experimental analysis that prediction accuracy of Ensemble Learning Method with higher stability has risen by four percent compared with single base classifier.The model presents higher prediction accuracy and applicability.It is valid for the Ensemble Learning Method based on Support Vector Machine to construct listed manufacturing company's financial crisis early warning model in China and the Ensemble Learning Method achieves certain effect from the perspective of enterprise financial early warning.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249