检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何瑞强[1]
机构地区:[1]忻州师范学院,山西忻州034000
出 处:《甘肃联合大学学报(自然科学版)》2012年第3期19-21,共3页Journal of Gansu Lianhe University :Natural Sciences
摘 要:著名的Hlder不等式在数学分析、调和分析、泛函分析以及偏微分方程等学科的研究中发挥着重要作用.该不等式不仅使用技巧灵活,而且得到的结果极其深刻.本文首先在可测函数论的基础上,给出Hlder不等式的一种新的证明方法,然后利用数学归纳法导出Hlder不等式的推广形式,最后应用Hlder不等式得出两个重要结论,为该不等式在更广数学领域的研究和应用奠定了基础.Famous Holder inequality plays an important role in the study of some disciplines such as mathematical analysis, harmonic analysis, functional analysis and partial differential equations. Not only its tips for using are flexibly, but also the results are very impressive. In this paper,a new method to prove Holder inequality on the basis of measurable functions was given. And generalized Holder inequality is given using mathematical induction forms. Last two important conclusions based on Holder inequality were got. These eonelusions lays the foundation for the equality's researches and applica- tions in the wider mathematics areas.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147