检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《湖北民族学院学报(自然科学版)》2012年第2期182-185,共4页Journal of Hubei Minzu University(Natural Science Edition)
摘 要:在随机环境中马氏链一般理论的研究中,通常要用到随机环境中马氏链与马氏双链间的相互关系.在此基础上,主要探讨了随机环境中马氏链下熵,维数的相关定义,并借助此关系讨论随机环境马氏链下有关熵的不等式的极值问题,获得了相关的结论.As branches of stochastic process, Markov chains in random environments were developed in 1970s. They have deep realistic background and intensive application. In the study of Markov chains in random environments, we often make use of the relations of Markov chains in random environments and joint Markov chains. Based on the previous works, we study relations among Markov chains in random en- vironments, joint Markov chains and original course. In this paper, on the basis of previous work, we mainly discuss the Markov chains in random environments, entropy, dimension and the relevant definition. This relationship is used to discuss the inequality extreme value problem, and a conclusion is obtained.
关 键 词:随机环境马氏链 熵 HAUSDORFF维数 填充维数
分 类 号:O211.6[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.136.11.217