检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐小来[1,2] 朱华勇[1] 贺中武 王伟 牛轶峰[1]
机构地区:[1]国防科学技术大学机电工程与自动化学院 [2]空军95172部队
出 处:《计算机工程与科学》2012年第4期82-87,共6页Computer Engineering & Science
基 金:中国博士后科学基金资助项目(201150M1562);中国博士后特别资助项目(201104765)
摘 要:如何生成最优的模糊规则数及模糊规则的自动生成和修剪是模糊神经网络训练算法研究的重点。针对这一问题,本文提出了基于UKF的自适应模糊推理神经网络(UKF-ANFIS)。首先,通过减法聚类确定UKF-ANFIS的模糊规则及其高斯隶属函数的中心和宽度参数;其次,分析了模糊神经网络的非线性动力系统表示,并用LLS和UKF分别学习线性和非线性的参数;然后,用误差下降率方法作为模糊规则修剪的策略,删除作用不大的规则;最后,通过典型的函数逼近和系统辨识实例,表明本文算法得到的模糊神经网络的结构更为紧凑,泛化性能也更佳。Much of the current research interest in neuro-fuzzy hybrid systems is focused on how to generate an optimal number of fuzzy rules in a neuro-fuzzy system and investigate the automated methods of adding and pruning fuzzy rules.To deal with this problem,an adaptive network based fuzzy inference system(ANFIS) based on UKF is presented.Firstly,fuzzy rules and their parameters of ANFIS-RR are obtained by subtractive clustering.Secondly,the parameters are learned by linear least square and the back propagation algorithm.Thirdly,the non-linear dynamical system expression of fuzzy networks is analyzed,and LLS and UKF are used to learn linear and non-linear parameters respectively.Then,a method of error descending rate is used as the fuzzy rule pruning strategy,so that the rule which plays an unimportant role in the system is deleted.Finally,by typical experiments of function approximation and system identification indicate that fuzzy networks obtained by the proposed algorithm has a more tightened structure and better generalization than other algorithms.
关 键 词:UKF 自适应模糊推理神经网络 规则约简 系统辨识 函数逼近
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.224.32.173