结合Tetrolet与主动随机场模型的高斯噪声抑制  被引量:1

Gaussian Noise Reduction with Tetrolet and Active Random Field Model

在线阅读下载全文

作  者:王锐玲[1] 施俊[1] 

机构地区:[1]上海大学通信与信息工程学院,上海200072

出  处:《应用科学学报》2012年第3期275-280,共6页Journal of Applied Sciences

基  金:国家自然科学基金(No.60701021);上海市教育委员会科研创新项目基金(No.09YZ15);上海市教委重点学科建设项目基金(No.J50104)资助

摘  要:文中提出一种结合Tetrolet变换和主动随机场模型的去噪方法,用于抑制图像中的高斯噪声.对含有高斯噪声的图像进行Haar小波分解,在小波变换域利用主动随机场算法针对高斯噪声进行去噪,并利用小波逆变换重构去噪后的图像,最后用Tetrolet变换在变换域进一步抑制噪声.实验结果表明,与直接利用小波、Tetrolet、马尔科夫随机场模型以及主动随机场模型等方法相比,该方法对添加不同程度高斯噪声的图像有更好的去噪效果.In this study, an image denoising algorithm is proposed by combining Tetrolet transform and active random field (ARF). An image with Caussian noise is decomposed with Haar wavelets, and the ARF algorithm is used to reduce Caussian noise in the wavelet domain. After inverse wavelet transform, the Tetrolet transform is used for further denoising. The proposed method is compared with other denoising algorithms including wavelet algorithm, Tetrolet algorithm, Markov random field based algorithm and ARF based algorithm. Experimental results indicate that the proposed approach can effectively reduce Gaussian noise at various levels, and achieve better results than other algorithms.

关 键 词:Tetrolet变换 主动随机场模型 图像去噪 高斯噪声 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象