Lode角对应力张量偏导数的基本性质  被引量:1

PROPERTIES OF THE DERIVATIVES OF LODE ANGLE WITH RESPECT TO STRESS

在线阅读下载全文

作  者:徐远杰[1] 楚锡华[1] 余村[1] 

机构地区:[1]武汉大学土木建筑工程学院工程力学系,武汉430072

出  处:《固体力学学报》2012年第3期296-301,共6页Chinese Journal of Solid Mechanics

基  金:国家自然科学基金(10802060;11172216);国家重点基础研究发展规划(973)项目(2010CB731502)资助

摘  要:为计及岩土类材料塑性力学行为的中主应力影响或应力路径相关性,通常将应力张量Lode角/Lode数引入屈服函数与塑性势函数.由此在计算塑性应变增量时必然涉及Lode角/Lode数对应力的导数张量(记为T).然而,应力张量主值有重根时T的计算存在困难.论文给出了T的主值计算方法及谱分解表达式并详细讨论了张量T的基本性质.The Lode angle is often introduced into the yield function or plastic potential for accounting the complex mechanical behaviors, such as influences of intermediate principle stress and stress path on failure and deformation,of granular soil. Therefore,the derivative of Lode angle with respect to stress (denoted as T) will be involved when calculating the plastic strain. However,the singularity of T occurs at the stress states with the repeated principle stress,leading to a difficulty in obtaining the principle values of T. In this contribution,a new method for calculating the principle values of T are presented, and some basic properties of T are discussed in details.

关 键 词:Lode角 应力张量 主值 不变量 导数 

分 类 号:TU431[建筑科学—岩土工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象