Pirarubicin inhibits multidrug-resistant osteosarcoma cell proliferation through induction of G~/M phase cell cycle arrest  被引量:9

Pirarubicin inhibits multidrug-resistant osteosarcoma cell proliferation through induction of G~/M phase cell cycle arrest

在线阅读下载全文

作  者:Shui-er ZHENG Sang XIONG Feng LIN Guang-lei QIAO Tao FENG Zan SHEN Da-liu MIN Chun-ling ZHANG Yang YAO 

机构地区:[1]Department of Oncology,Affiliated People's 6th Hospital,Shanghai Jiao Tong University,Shanghai 200233,China [2]Department of Orthopaedics,Affiliated People's 6th Hospital,Shanghai Jiao Tong University,Shanghai 200233,China

出  处:《Acta Pharmacologica Sinica》2012年第6期832-838,共7页中国药理学报(英文版)

摘  要:Aim: Pirarubicin (THP) is recently found to be effective in treating patients with advanced, relapsed or recurrent high-grade osteosarcoma. In this study, the effects of THP on the multidrug-resistant (MDR) osteosarcoma cells were assessed, and the underlying mechanisms for the disruption of cell cycle kinetics by THP were explored. Methods: Human osteosarcorna cell line MG63 and human MDR osteosarcoma cell line MG63/DOX were tested. The cytotoxicity of drugs was examined using a cell proliferation assay with the Cell Counting Kit-8 (CCK-8). The distribution of cells across the cell cycle was determined with flow cytometry. The expression of cell cycle-regulated genes cyclin B1 and Cdc2 (CDK1), and the phosphorylated Cdc2 and Cdc25C was examined using Western blot analyses. Results: MG63/DOX cells were highly resistant to doxorubicin (ADM) and gemcitabine (GEM), but were sensitive or lowly resistant to THP, methotrexate (MTX) and cisplatin (DDP). Treatment of MG63/DOX cells with THP (200-1000 ng/mL) inhibited the cell prolifera- tion in time- and concentration-dependent manners. THP (50-500 ng/mL) induced MG63/DOX cell cycle arrest at the G2/M phase in timeand concentration-dependent manners. Furthermore, the treatment of MG63/DOX cells with THP (200-1000 ng/mL) downregulated cyclin B1 expression, and decreased the phosphorylated Cdc2 at Thr161. Conversely, the treatment increased the phosphorylated Cdc2 at Thr14/Tyr1 and Cdc25C at Ser216, which led to a decrease in Cdc2-cyclin B1 activity. Conclusion: The cytotoxicity of THP to MG63/DOX cells may be in part due to its ability to arrest cell cycle progression at the G2/M phase, which supports the use of THP for managing patients with MDR osteosarcoma.Aim: Pirarubicin (THP) is recently found to be effective in treating patients with advanced, relapsed or recurrent high-grade osteosarcoma. In this study, the effects of THP on the multidrug-resistant (MDR) osteosarcoma cells were assessed, and the underlying mechanisms for the disruption of cell cycle kinetics by THP were explored. Methods: Human osteosarcorna cell line MG63 and human MDR osteosarcoma cell line MG63/DOX were tested. The cytotoxicity of drugs was examined using a cell proliferation assay with the Cell Counting Kit-8 (CCK-8). The distribution of cells across the cell cycle was determined with flow cytometry. The expression of cell cycle-regulated genes cyclin B1 and Cdc2 (CDK1), and the phosphorylated Cdc2 and Cdc25C was examined using Western blot analyses. Results: MG63/DOX cells were highly resistant to doxorubicin (ADM) and gemcitabine (GEM), but were sensitive or lowly resistant to THP, methotrexate (MTX) and cisplatin (DDP). Treatment of MG63/DOX cells with THP (200-1000 ng/mL) inhibited the cell prolifera- tion in time- and concentration-dependent manners. THP (50-500 ng/mL) induced MG63/DOX cell cycle arrest at the G2/M phase in timeand concentration-dependent manners. Furthermore, the treatment of MG63/DOX cells with THP (200-1000 ng/mL) downregulated cyclin B1 expression, and decreased the phosphorylated Cdc2 at Thr161. Conversely, the treatment increased the phosphorylated Cdc2 at Thr14/Tyr1 and Cdc25C at Ser216, which led to a decrease in Cdc2-cyclin B1 activity. Conclusion: The cytotoxicity of THP to MG63/DOX cells may be in part due to its ability to arrest cell cycle progression at the G2/M phase, which supports the use of THP for managing patients with MDR osteosarcoma.

关 键 词:OSTEOSARCOMA MULTIDRUG-RESISTANT PIRARUBICIN doxorubicin gemcitabine methotrexate cisplatin cell cycle GriM arrest cyclin B1 CDC2 Cdc25C 

分 类 号:Q2[生物学—细胞生物学] Q253

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象