检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张立柱[1]
出 处:《纯粹数学与应用数学》2012年第3期303-307,共5页Pure and Applied Mathematics
摘 要:讨论了第一型广义积分收敛时被积函数在无穷远处渐近性质,证明当广义积分收敛时,被积函数在无穷远处不一定趋于零,而可以表现为其他多种形式,如剧烈振荡的连续函数,或间断函数,甚至可以是特殊形式的非负连续函数等.最后给出当广义积分收敛时,判别被积函数在无穷远处是否趋于零时的几个条件.Abstract: In this paper, asymptotic properties of convergent infinite integralls integrand are discussed. It is proved that the limitation of integrand at infinite distance does not equal zero when the infinite integral is convergent, but the integrand can be many other types, such as violent vibrating continuous function, discon- tinuous hmction, or even non-negative continuous function of specialized type. Several conditions are given to distinguish whether the limitation of integrand at infinite distance equals zero or not when the infinite integral is convergent.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.10