检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学管理学院,安徽合肥230026 [2]清华大学核能与新能源技术研究院,北京100084
出 处:《中国科技论坛》2012年第8期94-99,共6页Forum on Science and Technology in China
摘 要:基于支持向量机神经网络理论,首创性地建立了一个由业绩产出财务指标辨识高新技术企业与传统企业类型的支持向量机模型。模型以企业的业绩产出财务指标数据为基础,以径向基函数作为核函数,使用网格寻优方法调节模型参数,得到优化后的模回去型,并使用测试集数据验证了模型。对结果进行二元分类决策分析,结果表明:该模型的准确率和决策率等主要评价指标都达到了85%以上,具有较高的辨识能力和可信度,为高新技术企业和传统企业的类型辨识提供了一种可靠的、简单方便的方法,可以直接量化地判别企业是否属于高新技术企业。This paper presents a novel identification model for the identification of high technology companies and traditional ones from financial performance indexes for the first time, based on the support vector machine (SVM) neural network (NN). The model is on the basis of the data of companies' indexes, employs radial basis function (RFB) as the kernel function. The kernel parameters are selected and adjusted by grid search method. The optimized model is verified by the test data. The results are discussed by binary classification decision analysis. It indicates that the accuracy, precision, recall and other main evaluation indexes of the model are achieved 85% above, which means high reliability. The model provides a reliable, simple and convenient approach for the type identification of high technology companies quantitatively.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117