检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]高性能计算与随机信息处理省部共建教育部重点实验室湖南师范大学数学与计算机科学学院,长沙410081
出 处:《计算数学》2012年第3期235-258,共24页Mathematica Numerica Sinica
基 金:国家自然科学基金(No.11071067)资助项目
摘 要:为求解非线性方程组F(x)=0,研究了Newton流方程x_t(t)=V(x)=-(DF(x))^(-1)F(x),x(0)=-x^0,及数值Newton流x^(j+1)=x^j+hV(x^j),h∈(0,1].导出了减幅指标g_j(h)=‖F(x^(j+1)‖/‖F(x^j)‖=1-h+h^2d_j(h)<1和m重根x~*附近的表示g_j(h)=(1-h/m)~m+h^2O(‖x^j-x~*‖).最后基于4个可计算量g_j,d_j,K_j,q_j,提出了新的Newton流线法,如果投入大量的随机初始点,能找到所有实根、重根和复根.To solve nonlinear systems of equations F(x) =0, Newton's flow equation xt(t) = V ( x ) =- ( D F ( x ) )^-1 F ( x ) , x (0 ) = x^0 and its numerical flow x^j+1 = x^j + h V ( x^j) for h ∈ (0, 1] are studied. The damped index gj(h) =‖F(x^j+1)‖/‖F(x^j)‖ = ‖ - h + h^2dj(h)| 〈 1 and refine expression gj (h) = (1 - h/m)^m + h2O(‖x^j - x^*‖) near the m-ple root x^* are derived. Finally based on fourth computable quantities gj, dj, Kj, qj, a new Newton flow algorithm is proposed, which can find all real, multiple and complex roots, if put into a large number of stochastic initial points.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80