基于EMD的胶合板损伤声发射信号特征提取及神经网络模式识别  被引量:13

Feature extraction and pattern recognition of acoustic emission signals generated from plywood damage based on EMD and neural network

在线阅读下载全文

作  者:徐锋[1] 刘云飞[1] 

机构地区:[1]南京林业大学信息科学技术学院,南京210037

出  处:《振动与冲击》2012年第15期30-35,共6页Journal of Vibration and Shock

基  金:南京林业大学科技创新基金(163070080);南京林业大学"十五"人才基金(163070505)

摘  要:针对胶合板损伤声发射信号的非平稳性和损伤类别特征相互重叠的实际情况,提出了基于经验模态分解和BP神经网络相结合的信号特征提取和识别方法。首先对损伤声发射信号进行EMD分解,筛选出包含主要信息的本征模态函数分量;其次构建以各IMF分量的能量占比作为表征各损伤信号的特征向量;最后以提取的特征向量为输入样本,建立BP神经网络模式分类器对四类胶合板损伤信号进行识别。五层胶合板损伤的实测数据表明,该方法能够准确地提取出声发射信号特征并对其损伤类型进行有效地识别。Aiming at the non-stationary features of acoustic emission(AE) signals generated from plywood damage and considering the overlapping of damage features in practice,a method of feature extraction and pattern recognition was proposed based on empirical mode decomposition(EMD) and BP neural network.The original AE signals were decomposed by EMD,and the intrinsic mode function(IMF) including the main feature information was selected.The energy ratios of IMF were constructed as a feature vector to identify the type of damage signals.BP neutral network pattern classifier was then established to identify four types of plywood damage signals.The measured result from a five-layed plywood damage shows that the method can extract AE signals characteristics precisely and identify damage types efficiently.

关 键 词:声发射 经验模态分解 神经网络 特征提取 模式识别 

分 类 号:TB529[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象