检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安电子科技大学综合业务网理论及关键技术国家重点实验室,陕西西安710071
出 处:《西安电子科技大学学报》2012年第4期1-6,45,共7页Journal of Xidian University
基 金:国家自然科学基金资助项目(60872141);中央高校基本科研业务费专项资金资助项目(K50510010007);陕西省自然科学基础研究计划资助项目(2009JQ8019)
摘 要:针对复杂场景下多特征跟踪算法适应性不强的问题,提出一种多特征有效融合和更新的目标跟踪方法.该方法首先在粒子滤波框架下采用加权融合的方式对目标进行多特征观测和相似性度量,通过分析粒子的空间集中度和权值分布建立一种有效的融合系数计算方法,使融合结果更加准确可靠.然后选取可信度高的特征检测遮挡,并动态调整目标模型的更新速度,以降低算法受目标变化和部分遮挡的影响.实验证明该方法对复杂的跟踪场景具有更强的鲁棒性,并适用于目标被遮挡时的跟踪.Object tracking using multiple features has poor performance under complex scenes and when occlusion occurs. Therefore, an algorithm for fusing multiple features adaptively in the particle filter tracking framework is proposed, The tracked object is represented by the fusion of all features under linear weighting, and a new method to estimate the fusion coefficient is also proposed according to the weight distribution of all particles as well as their spatial concentrations, thus improving the reliability of multi features fusion. Besides, a dynamic updating strategy is used to adjust the update speed of each feature template adaptively, thus alleviating the affection of object deformation. According to the confidence of each feature, an occlusion handling strategy is invoked to decrease the influence of partial occlusion. Analysis and experiment show that the proposed method is more robust under complex scenes, and is applicable in the presence of occlusions.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145