A proteomics study of auxin effects in Arabidopsis thaliana  

A proteomics study of auxin effects in Arabidopsis thaliana

在线阅读下载全文

作  者:Meiqing Xing Hongwei Xue 

机构地区:[1]National Key Laboratory of Plant Molecular Genetics,Institute of Plant Physiology and Ecology,Shanghai Institutes for Biological Sciences Chinese Academy of Sciences,200032 Shanghai,China

出  处:《Acta Biochimica et Biophysica Sinica》2012年第9期783-796,共14页生物化学与生物物理学报(英文版)

基  金:The work was supported by grants from the National Natural Science Foundation of China (No. 90717001) and the Shanghai Science and Technology Development Fund (No. 2008XD14049).

摘  要:Many phytohormones regulate plant growth and development through modulating protein degradation. In this study, a proteome study based on multidimensional non-gel shotgun approach was performed to analyze the auxin-induced protein degradation via ubiquitinproteasome pathway of Arabidopsis thaliana, with the emphasis to study the overall protein changes after auxin treatment (1 nM or 1 μM indole-3-acetic acid for 6, 12, or 24 h). More than a thousand proteins were detected by using label-free shotgun method, and 386 increased proteins and 370 decreased ones were identified after indole-3-acetic acid treatment. By using the auxin recep- tor-deficient mutant, tirl-1, as control, comparative analysis revealed that 69 and 79 proteins were significantly decreased and increased, respectively. Detailed analysis showed that among the altered proteins, some were previously reported to be associated with auxin regulation and others are potentially involved in mediating the auxin effects on specific cellular and physiological processes by regulating photosynthesis, chloroplast development, cyto-skeleton, and intracellular signaling. Our results demonstrated that label-free shotgun proteomics is a powerful tool for large-scale protein identification and the analysis of the proteomic profiling of auxin-regulated biological processes will provide informative clues of underlying mechanisms of auxin effects. These results will help to expand the understanding of how auxin regulates plant growth and development via protein degradation.Many phytohormones regulate plant growth and development through modulating protein degradation. In this study, a proteome study based on multidimensional non-gel shotgun approach was performed to analyze the auxin-induced protein degradation via ubiquitinproteasome pathway of Arabidopsis thaliana, with the emphasis to study the overall protein changes after auxin treatment (1 nM or 1 μM indole-3-acetic acid for 6, 12, or 24 h). More than a thousand proteins were detected by using label-free shotgun method, and 386 increased proteins and 370 decreased ones were identified after indole-3-acetic acid treatment. By using the auxin recep- tor-deficient mutant, tirl-1, as control, comparative analysis revealed that 69 and 79 proteins were significantly decreased and increased, respectively. Detailed analysis showed that among the altered proteins, some were previously reported to be associated with auxin regulation and others are potentially involved in mediating the auxin effects on specific cellular and physiological processes by regulating photosynthesis, chloroplast development, cyto-skeleton, and intracellular signaling. Our results demonstrated that label-free shotgun proteomics is a powerful tool for large-scale protein identification and the analysis of the proteomic profiling of auxin-regulated biological processes will provide informative clues of underlying mechanisms of auxin effects. These results will help to expand the understanding of how auxin regulates plant growth and development via protein degradation.

关 键 词:PROTEOMICS AUXIN tirl-1 ARABIDOPSIS SHOTGUN 

分 类 号:Q51[生物学—生物化学] X173[环境科学与工程—环境科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象